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Pavel Stěhule

● Developer, designer, consultant, teacher, instructor
● PLpgSQL developer since 2005 (PostgreSQL 8.1)

– variadic parameters, default parameters
– RETURN QUERY, CONTINUE, FOREACH SLICE, 
GET STACKED DIAGNOSTICS, ASSERT

– USAGE clause in EXECUTE
– rich RAISE statement
– plpgsql_check, Orafce

● functions: greatest, least, format, string_agg,
left, right,

● \sf, \ef, \gset



  

PLpgSQL 

CREATE OR REPLACE FUNCTION new_customer(name text, surname text)
RETURNS int AS $$
DECLARE uid int;
BEGIN
  IF NOT EXISTS(SELECT * FROM customers c
                   WHERE c.name = new_customer.name
                     AND c.surname = new_customer.surname)
  THEN
    INSERT INTO customers(name, surname)
       VALUES(new_customer.name, new_customer.surname
       RETURNING id INTO uid;
    RETURN uid;
  ELSE
    RAISE EXCEPTION "Customer exists already";
  END IF;
END;
$$ LANGUAGE plpgsql STRICT;

CREATE OR REPLACE FUNCTION new_customer(name text, surname text)
RETURNS int AS $$
DECLARE uid int;
BEGIN
  IF NOT EXISTS(SELECT * FROM customers c
                   WHERE c.name = new_customer.name
                     AND c.surname = new_customer.surname)
  THEN
    INSERT INTO customers(name, surname)
       VALUES(new_customer.name, new_customer.surname
       RETURNING id INTO uid;
    RETURN uid;
  ELSE
    RAISE EXCEPTION "Customer exists already";
  END IF;
END;
$$ LANGUAGE plpgsql STRICT;



  

PLpgSQL

● ADA (PL/SQL) based language
● Algol like family: Pascal, Modula, ADA, Visual Basic, 

 ... - verbose languages
● Language is reduced - no I/O, packages, procedures
● Language is enhanced - SQL is part of language
● Reduce network overhead
● Helps with application decomposition
● Helps with security



  

PLpgSQL <=> PL/SQL

● Sometimes exact match
– FOR i IN 1 .. 10 LOOP

● Sometimes partial match
– FOR r IN SELECT * FROM ...

– EXECUTE IMMEDIATE '....'

● Sometimes zero match
– dbms_output.put_line(...)

– RAISE NOTICE '...'

● Sometimes a default is opposite
– SECURITY INVOKER (Postgres)
– SECURITY DEFINER (Oracle, MSSQL, SQL/PSM)



  

PLpgSQL <=> PL/SQL

● PLpgSQL looks like PL/SQL
● Originally primitive PL/SQL clone
● Different implementation

– Bison parser, AST interpret, primitive SQL parsing, in 
process

● Now
– Bison parser, AST interpret, smart integration with SQL 

parser/analyzer, in process



  

BASIC RULE

● NEWER EDIT PLPGSQL WITH PGADMIN!!!
● Use your preferred editor and edit file, deploy file
● use git ...
● Automatize by make, Makefile
● Regress tests are important
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Important design points

● Simplicity!!!!
● No compile (validation) dependencies
● Native (internal) stored procedures are supported.

– code is stored in raw source code form (pg_proc.prosrc)

● Binary (external) stored procedures are supported.
– the path to routine is stored (pg_proc.probin)

● Strong integration with SQL engine - SQL is same 
everywhere.
 



  

PLpgSQL

● Parser produces AST in local memory.
– used as validator ( > /dev/null)

● Executor interprets AST in local memory/
● Almost only local memory is used.
● AST is never serialized / read from IO.
● AST can be displayed, but nobody use it.

– #option dump



  

No compile time dependencies

● Validation is fast (less access to system tables, 
processing only one object)

● Tools are simple (no dependencies)
● Some patterns are possible (local temp tables)

● But some bugs (typo) are detected too late 
● (in runtime).
● plpgsql_check is necessary for larger code base



  

AST based interpret

● The code is simple and clean.
● Only one stage in processing - parsing
● Evaluation is effective - almost all code is executed by optimized 

C code.
● New features are implemented simply.

● Some statements are hard to implement.
– PLpgSQL has not GOTO statement (no plan to fix it)

● Expressions are evaluated by SQL engine.
– 100% compatible with PostgreSQL



  

In-process execution

● PostgreSQL uses one process per session.
● This process is used for SQL engine and PL runtime.

● No inter-process communication, no overhead
● Usually without problems

– TRUST languages are safe - PLpgSQL

● But possible dangerous in untrusted languages - try set 
timeout in PLPerlu libraries and run operation slower 
1sec. => segfault process => enforced server restart



  

Oracle PL/SQL

● Based on complete  ADA interpret (environment)
– with some compilation support

● Strong, but pretty complex
● Dependencies between objects
● Massive libraries
● Separate process from database engine



  

PL/SQL compiler

● When bottleneck are SQL statements, then speed 
of procedures are not significant.

● Some code doesn't use SQL - speed is important.
● Byte code interpretation without JIT is slow.
● Oracle fix - translate byte code “M-CODE” to C and 

compile (solution from pre JIT era). 
– significantly faster than M-CODE interpret
– slower than native C-code



  

PostgreSQL reply

● No PL/pgSQL compiler
● There are lot of other fast PL with different speed 

characteristics (fast start, fast execution, fast string 
operations)
– Python, Perl, Lua, Java, 

● Nice and simple C - API 
– C is nice and simple language for short tasks
– typical for string manipulation (see Orafce)



  

PL/pgSQL differences

● No OOP features
● Differently designed aggregates, exceptions
● Only local variables

– possible to use server side custom setting variables (simple usage but slow)
– possible to use PLPerl session variable
– possible to use C extension (secure)

● No packages - use schema instead
● No collections - use arrays instead, or Perl hash
● No DBMS packages - but Orafce and CPAN (untrusted)
● No autonomous transactions - emulated by dblink



  

PLpgSQL to PL/SQL relation

● PLpgSQL is a clone of PL/SQL.
● Before EDB era there was a plan be compatible with PL/SQL.
● Leaved - PostgreSQL is not a Oracle clone now, usually we implement 

what we like and what is not big trap to Oracle developers. 
● Our strategy: PLpgSQL is simple to learn, simple to usage PL/SQL 

like language. Who need 100% compatibility, use EDB.
● Some concepts from Oracle are not possible in Postgres (Oracle - one PL, 

Postgres multiple PL).
● Some concepts are complex or redundant.

– Schema X packages
● PLpgSQL is first from more supported PL (not alone). Some features 

should be more generally designed.



  

Oracle PACKAGE

CREATE PACKAGE bonus AS
  PROCEDURE calc_bonus(uid int);
END

CREATE PACKAGE BODY bonus AS 
  PROCEDURE calc_bonus(uid int) IS
  BEGIN
    DBMS_OUTPUT.PUT_LINE('started');
  END;
END bonus;



  

PostgreSQL SCHEMA

DROP SCHEMA IF EXISTS bonus CASCADE;
CREATE SCHEMA bonus;
SET search_path TO bonus;

CREATE FUNCTION calc_bonus(uid int)
RETURNS void AS $$
BEGIN
  RAISE NOTICE 'started';
END;
$$ LANGUAGE plpgsql SET search_path = bonus;



  

Attention!

● PostgreSQL schema ≠ Oracle schema
● PostgreSQL schema ~ Oracle packages

– no relation to user
– no relation to storage



  

What we did?

● 8.4 CASE, rich exception, VARIADIC fce, DEFAULT params, 
● 9.0 (2010) detection ambiguous SQL and PLpgSQL 

identifiers, naming & mixed notation
● 9.1 FOREACH
● 9.2 GET STACKED DIAGNOSTICS
● 9.3 event triggers, enhanced GET STACKED DIAGNOSTICS 
● 9.4 enhanced GET DIAGNOSTICS,enhanced event triggers
● 9.5 ASSERT
● 9.6 valid context info for RAISE EXCEPTION, ??



  

What we want?
Reality

● Global temp tables (3 years)
– more comfort for developers
– less impact on performance (bloating pg_attribute)

● Autonomous transactions (3 years)
– good for auditing, logs in tables, maintenance

● Static local variables (3 years)
– can help with migration from Oracle packages



  

What we want?
Dreams

● Better work with dynamic complex types
x.data[10].rec.{fieldname} = ...

● Basic scheduler, simple work-flow system based 
on notification handlers

● Procedures with some PL/SQL, T-SQL features 
– linear transactions (X nested transactions) - possible 

with autonomous transactions
– multirecord sets



  

Doesn't do

● Doesn't migrate wrong badly designed code 1:1
– don't supply client side code in procedures

● interactivity
● multilingual support, ..

– don't supply communication server in procedures, database
● own communication server (SOAP, REST) is more robust than database based 

communication

● Relational database is not OOP database
– Entity relation diagram
– Data flow diagram
– No inheritance

● All rules has exceptions!!!



  

Do

● Use PL for data manipulation
● PL is designed for procedural principles (NOT OOP)
● Write procedures (not method)
● Oriented on business process implementation
● Separate layers

– client: data input, data presentation
– communication server:
– database: data manipulation, data store



  

Do

● When your application is data oriented, (database 
centric)
– verify your schema early 

● SQL queries should be readable

– verify performance early
● test performance important or frequented queries

● use auto_explain
– log_nested_statements = on



  

plpgsql_check

● https://github.com/okbob/plpgsql_check
● two modes:

– passive - LOAD 'plpgsql_check' (disabled by default)
– active - plpgsql_check_function()

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)



  

#option dump

 Execution tree of successfully compiled PL/pgSQL function test(integer):
 Function's data area:
 entry 0: VAR $1               type int4 (typoid 23) atttypmod -1
 entry 1: VAR found            type bool (typoid 16) atttypmod -1
 entry 2: VAR x                type int4 (typoid 23) atttypmod -1
 DEFAULT 'SELECT a'
 Function's statements:
 4:BLOCK <<*unnamed*>>
 5:  ASSIGN var 2 := 'SELECT x + a'
 6:  RETURN variable 2
 END -- *unnamed*
 End of execution tree of function test(integer)

 Execution tree of successfully compiled PL/pgSQL function test(integer):
 Function's data area:
 entry 0: VAR $1               type int4 (typoid 23) atttypmod -1
 entry 1: VAR found            type bool (typoid 16) atttypmod -1
 entry 2: VAR x                type int4 (typoid 23) atttypmod -1
 DEFAULT 'SELECT a'
 Function's statements:
 4:BLOCK <<*unnamed*>>
 5:  ASSIGN var 2 := 'SELECT x + a'
 6:  RETURN variable 2
 END -- *unnamed*
 End of execution tree of function test(integer)
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