
  

PLpgSQL versus PL/SQL

Pavel Stěhule

PgConf.Russia 2016



  

Pavel Stěhule

● Developer, designer, consultant, teacher, instructor
● PLpgSQL developer since 2005 (PostgreSQL 8.1)

– variadic parameters, default parameters
– RETURN QUERY, CONTINUE, FOREACH SLICE, 
GET STACKED DIAGNOSTICS, ASSERT

– USAGE clause in EXECUTE
– rich RAISE statement
– plpgsql_check, Orafce

● functions: greatest, least, format, string_agg,
left, right,

● \sf, \ef, \gset



  

PLpgSQL 

CREATE OR REPLACE FUNCTION new_customer(name text, surname text)
RETURNS int AS $$
DECLARE uid int;
BEGIN
  IF NOT EXISTS(SELECT * FROM customers c
                   WHERE c.name = new_customer.name
                     AND c.surname = new_customer.surname)
  THEN
    INSERT INTO customers(name, surname)
       VALUES(new_customer.name, new_customer.surname
       RETURNING id INTO uid;
    RETURN uid;
  ELSE
    RAISE EXCEPTION "Customer exists already";
  END IF;
END;
$$ LANGUAGE plpgsql STRICT;

CREATE OR REPLACE FUNCTION new_customer(name text, surname text)
RETURNS int AS $$
DECLARE uid int;
BEGIN
  IF NOT EXISTS(SELECT * FROM customers c
                   WHERE c.name = new_customer.name
                     AND c.surname = new_customer.surname)
  THEN
    INSERT INTO customers(name, surname)
       VALUES(new_customer.name, new_customer.surname
       RETURNING id INTO uid;
    RETURN uid;
  ELSE
    RAISE EXCEPTION "Customer exists already";
  END IF;
END;
$$ LANGUAGE plpgsql STRICT;



  

PLpgSQL

● ADA (PL/SQL) based language
● Algol like family: Pascal, Modula, ADA, Visual Basic, 

 ... - verbose languages
● Language is reduced - no I/O, packages, procedures
● Language is enhanced - SQL is part of language
● Reduce network overhead
● Helps with application decomposition
● Helps with security



  

PLpgSQL <=> PL/SQL

● Sometimes exact match
– FOR i IN 1 .. 10 LOOP

● Sometimes partial match
– FOR r IN SELECT * FROM ...

– EXECUTE IMMEDIATE '....'

● Sometimes zero match
– dbms_output.put_line(...)

– RAISE NOTICE '...'

● Sometimes a default is opposite
– SECURITY INVOKER (Postgres)
– SECURITY DEFINER (Oracle, MSSQL, SQL/PSM)



  

PLpgSQL <=> PL/SQL

● PLpgSQL looks like PL/SQL
● Originally primitive PL/SQL clone
● Different implementation

– Bison parser, AST interpret, primitive SQL parsing, in 
process

● Now
– Bison parser, AST interpret, smart integration with SQL 

parser/analyzer, in process



  

BASIC RULE

● NEWER EDIT PLPGSQL WITH PGADMIN!!!
● Use your preferred editor and edit file, deploy file
● use git ...
● Automatize by make, Makefile
● Regress tests are important



  

FUNCTION

VALIDATION
Parsing to AST

pg_proc
column: prosrc

format: text

Parsing to AST

Session 
memory cache

AST

AST
interpretation

Result

EXECUTION

VALIDATION

POSTGRESQL



  

FUNCTION

First stage
compilation

System catalogue
DIANA

Direct
execution

Result

EXECUTION

COMPILATION
ORACLE

Second stage
compilation

System catalogue
M-CODE

Third stage
compilation

Binary code

Shared
memoryM-CODE

Virtual
machine



  

Important design points

● Simplicity!!!!
● No compile (validation) dependencies
● Native (internal) stored procedures are supported.

– code is stored in raw source code form (pg_proc.prosrc)

● Binary (external) stored procedures are supported.
– the path to routine is stored (pg_proc.probin)

● Strong integration with SQL engine - SQL is same 
everywhere.
 



  

PLpgSQL

● Parser produces AST in local memory.
– used as validator ( > /dev/null)

● Executor interprets AST in local memory/
● Almost only local memory is used.
● AST is never serialized / read from IO.
● AST can be displayed, but nobody use it.

– #option dump



  

No compile time dependencies

● Validation is fast (less access to system tables, 
processing only one object)

● Tools are simple (no dependencies)
● Some patterns are possible (local temp tables)

● But some bugs (typo) are detected too late 
● (in runtime).
● plpgsql_check is necessary for larger code base



  

AST based interpret

● The code is simple and clean.
● Only one stage in processing - parsing
● Evaluation is effective - almost all code is executed by optimized 

C code.
● New features are implemented simply.

● Some statements are hard to implement.
– PLpgSQL has not GOTO statement (no plan to fix it)

● Expressions are evaluated by SQL engine.
– 100% compatible with PostgreSQL



  

In-process execution

● PostgreSQL uses one process per session.
● This process is used for SQL engine and PL runtime.

● No inter-process communication, no overhead
● Usually without problems

– TRUST languages are safe - PLpgSQL

● But possible dangerous in untrusted languages - try set 
timeout in PLPerlu libraries and run operation slower 
1sec. => segfault process => enforced server restart



  

Oracle PL/SQL

● Based on complete  ADA interpret (environment)
– with some compilation support

● Strong, but pretty complex
● Dependencies between objects
● Massive libraries
● Separate process from database engine



  

PL/SQL compiler

● When bottleneck are SQL statements, then speed 
of procedures are not significant.

● Some code doesn't use SQL - speed is important.
● Byte code interpretation without JIT is slow.
● Oracle fix - translate byte code “M-CODE” to C and 

compile (solution from pre JIT era). 
– significantly faster than M-CODE interpret
– slower than native C-code



  

PostgreSQL reply

● No PL/pgSQL compiler
● There are lot of other fast PL with different speed 

characteristics (fast start, fast execution, fast string 
operations)
– Python, Perl, Lua, Java, 

● Nice and simple C - API 
– C is nice and simple language for short tasks
– typical for string manipulation (see Orafce)



  

PL/pgSQL differences

● No OOP features
● Differently designed aggregates, exceptions
● Only local variables

– possible to use server side custom setting variables (simple usage but slow)
– possible to use PLPerl session variable
– possible to use C extension (secure)

● No packages - use schema instead
● No collections - use arrays instead, or Perl hash
● No DBMS packages - but Orafce and CPAN (untrusted)
● No autonomous transactions - emulated by dblink



  

PLpgSQL to PL/SQL relation

● PLpgSQL is a clone of PL/SQL.
● Before EDB era there was a plan be compatible with PL/SQL.
● Leaved - PostgreSQL is not a Oracle clone now, usually we implement 

what we like and what is not big trap to Oracle developers. 
● Our strategy: PLpgSQL is simple to learn, simple to usage PL/SQL 

like language. Who need 100% compatibility, use EDB.
● Some concepts from Oracle are not possible in Postgres (Oracle - one PL, 

Postgres multiple PL).
● Some concepts are complex or redundant.

– Schema X packages
● PLpgSQL is first from more supported PL (not alone). Some features 

should be more generally designed.



  

Oracle PACKAGE

CREATE PACKAGE bonus AS
  PROCEDURE calc_bonus(uid int);
END

CREATE PACKAGE BODY bonus AS 
  PROCEDURE calc_bonus(uid int) IS
  BEGIN
    DBMS_OUTPUT.PUT_LINE('started');
  END;
END bonus;



  

PostgreSQL SCHEMA

DROP SCHEMA IF EXISTS bonus CASCADE;
CREATE SCHEMA bonus;
SET search_path TO bonus;

CREATE FUNCTION calc_bonus(uid int)
RETURNS void AS $$
BEGIN
  RAISE NOTICE 'started';
END;
$$ LANGUAGE plpgsql SET search_path = bonus;



  

Attention!

● PostgreSQL schema ≠ Oracle schema
● PostgreSQL schema ~ Oracle packages

– no relation to user
– no relation to storage



  

What we did?

● 8.4 CASE, rich exception, VARIADIC fce, DEFAULT params, 
● 9.0 (2010) detection ambiguous SQL and PLpgSQL 

identifiers, naming & mixed notation
● 9.1 FOREACH
● 9.2 GET STACKED DIAGNOSTICS
● 9.3 event triggers, enhanced GET STACKED DIAGNOSTICS 
● 9.4 enhanced GET DIAGNOSTICS,enhanced event triggers
● 9.5 ASSERT
● 9.6 valid context info for RAISE EXCEPTION, ??



  

What we want?
Reality

● Global temp tables (3 years)
– more comfort for developers
– less impact on performance (bloating pg_attribute)

● Autonomous transactions (3 years)
– good for auditing, logs in tables, maintenance

● Static local variables (3 years)
– can help with migration from Oracle packages



  

What we want?
Dreams

● Better work with dynamic complex types
x.data[10].rec.{fieldname} = ...

● Basic scheduler, simple work-flow system based 
on notification handlers

● Procedures with some PL/SQL, T-SQL features 
– linear transactions (X nested transactions) - possible 

with autonomous transactions
– multirecord sets



  

Doesn't do

● Doesn't migrate wrong badly designed code 1:1
– don't supply client side code in procedures

● interactivity
● multilingual support, ..

– don't supply communication server in procedures, database
● own communication server (SOAP, REST) is more robust than database based 

communication

● Relational database is not OOP database
– Entity relation diagram
– Data flow diagram
– No inheritance

● All rules has exceptions!!!



  

Do

● Use PL for data manipulation
● PL is designed for procedural principles (NOT OOP)
● Write procedures (not method)
● Oriented on business process implementation
● Separate layers

– client: data input, data presentation
– communication server:
– database: data manipulation, data store



  

Do

● When your application is data oriented, (database 
centric)
– verify your schema early 

● SQL queries should be readable

– verify performance early
● test performance important or frequented queries

● use auto_explain
– log_nested_statements = on



  

plpgsql_check

● https://github.com/okbob/plpgsql_check
● two modes:

– passive - LOAD 'plpgsql_check' (disabled by default)
– active - plpgsql_check_function()

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)



  

#option dump

 Execution tree of successfully compiled PL/pgSQL function test(integer):
 Function's data area:
 entry 0: VAR $1               type int4 (typoid 23) atttypmod -1
 entry 1: VAR found            type bool (typoid 16) atttypmod -1
 entry 2: VAR x                type int4 (typoid 23) atttypmod -1
 DEFAULT 'SELECT a'
 Function's statements:
 4:BLOCK <<*unnamed*>>
 5:  ASSIGN var 2 := 'SELECT x + a'
 6:  RETURN variable 2
 END -- *unnamed*
 End of execution tree of function test(integer)

 Execution tree of successfully compiled PL/pgSQL function test(integer):
 Function's data area:
 entry 0: VAR $1               type int4 (typoid 23) atttypmod -1
 entry 1: VAR found            type bool (typoid 16) atttypmod -1
 entry 2: VAR x                type int4 (typoid 23) atttypmod -1
 DEFAULT 'SELECT a'
 Function's statements:
 4:BLOCK <<*unnamed*>>
 5:  ASSIGN var 2 := 'SELECT x + a'
 6:  RETURN variable 2
 END -- *unnamed*
 End of execution tree of function test(integer)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

